Exposure to rosiglitazone, a PPAR-γ agonist, in late gestation reduces the abundance of factors regulating cardiac metabolism and cardiomyocyte size in the sheep fetus.

نویسندگان

  • Shervi Lie
  • Melisa Hui
  • I Caroline McMillen
  • Beverly S Muhlhausler
  • Giuseppe S Posterino
  • Stacey L Dunn
  • Kimberley C Wang
  • Kimberley J Botting
  • Janna L Morrison
چکیده

It is unknown whether cardiomyocyte hypertrophy and the transition to fatty acid oxidation as the main source of energy after birth is dependent on the maturation of the cardiomyocytes' metabolic system, or on the limitation of substrate availability before birth. This study aimed to investigate whether intrafetal administration of a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, rosiglitazone, during late gestation can stimulate the expression of factors regulating cardiac growth and metabolism in preparation for birth, and the consequences of cardiac contractility in the fetal sheep at ∼140 days gestation. The mRNA expression and protein abundance of key factors regulating growth and metabolism were quantified using quantitative RT-PCR and Western blot analysis, respectively. Cardiac contractility was determined by measuring the Ca(2+) sensitivity and maximum Ca(2+)-activated force of skinned cardiomyocyte bundles. Rosiglitazone-treated fetuses had a lower cardiac abundance of insulin-signaling molecules, including insulin receptor-β, insulin receptor substrate-1 (IRS-1), phospho-IRS-1 (Tyr-895), phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, PI3K catalytic subunit p110α, phospho-3-phosphoinositide-dependent protein kinase 1 (Ser-241), protein kinase B (Akt-1), phospho-Akt (Ser-273), PKCζ, phospho-PKCζ(Thr-410), Akt substrate 160 kDa (AS160), phospho-AS160 (Thr-642), and glucose transporter type-4. Additionally, cardiac abundance of regulators of fatty acid β-oxidation, including adiponectin receptor 1, AMPKα, phospho-AMPKα (Thr-172), phospho-acetyl CoA carboxylase (Ser-79), carnitine palmitoyltransferase-1, and PGC-1α was lower in the rosiglitazone-treated group. Rosiglitazone administration also resulted in a decrease in cardiomyocyte size. Rosiglitazone administration in the late-gestation sheep fetus resulted in a decreased abundance of factors regulating cardiac glucose uptake, fatty acid β-oxidation, and cardiomyocyte size. These findings suggest that activation of PPAR-γ using rosiglitazone does not promote the maturation of cardiomyocytes; rather, it may decrease cardiac metabolism and compromise cardiac health later in life.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carvacrol and Zataria multiflora influenced the PPARγ agonist effects on systemic inflammation and oxidative stress induced by inhaled paraquat in rat

Objective(s): The effects of PPAR-γ agonist alone and in combination with carvacrol and Zataria multiflora on inhaled paraquat (PQ) induced-systemic inflammation and oxidative stress were examined. Materials and Methods: Control group exposed to normal saline aerosol, one group exposed to 54 mg/m3 PQ aerosol and four groups exposed to PQ...

متن کامل

Cardiomyocyte-Specific Knockout and Agonist of Peroxisome Proliferator

Peroxisome proliferator–activated receptor (PPAR)is required for adipogenesis but is also found in the cardiovascular system, where it has been proposed to oppose inflammatory pathways and act as a growth suppressor. PPARagonists, thiazolidinediones (TZDs), inhibit cardiomyocyte growth in vitro and in pressure overload models. Paradoxically, TZDs also induce cardiac hypertrophy in animal models...

متن کامل

The Effect of Biochanin A as PPAR γ agonist on LDL Particles Diameter and Type 2 Diabetic Dyslipidemia

Background and Aims: Small dense  low-density lipoproteins (sd-LDL) particles are smaller and heavier than typical LDL ones. They can penetrate into the endothelium of coronary arteries more easily because of their small size. Diabetes mellitus is accompanied by dyslipidemia such as increasing concentration of plasma very low density lipoprotein and sd-LDL. Peroxisome proliferator activated rec...

متن کامل

Effects of PPARs Agonists on Cardiac Metabolism in Littermate and Cardiomyocyte-Specific PPAR-γ –Knockout (CM-PGKO) Mice

Understanding the molecular regulatory mechanisms controlling for myocardial lipid metabolism is of critical importance for the development of new therapeutic strategies for heart diseases. The role of PPARγ and thiazolidinediones in regulation of myocardial lipid metabolism is controversial. The aim of our study was to assess the role of PPARγ on myocardial lipid metabolism and function and di...

متن کامل

Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice.

Peroxisome proliferator-activated receptor (PPAR)-gamma is required for adipogenesis but is also found in the cardiovascular system, where it has been proposed to oppose inflammatory pathways and act as a growth suppressor. PPAR-gamma agonists, thiazolidinediones (TZDs), inhibit cardiomyocyte growth in vitro and in pressure overload models. Paradoxically, TZDs also induce cardiac hypertrophy in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 306 6  شماره 

صفحات  -

تاریخ انتشار 2014